

Building 'LIBERTY' – a U.S. Maritime Civil Nuclear Program

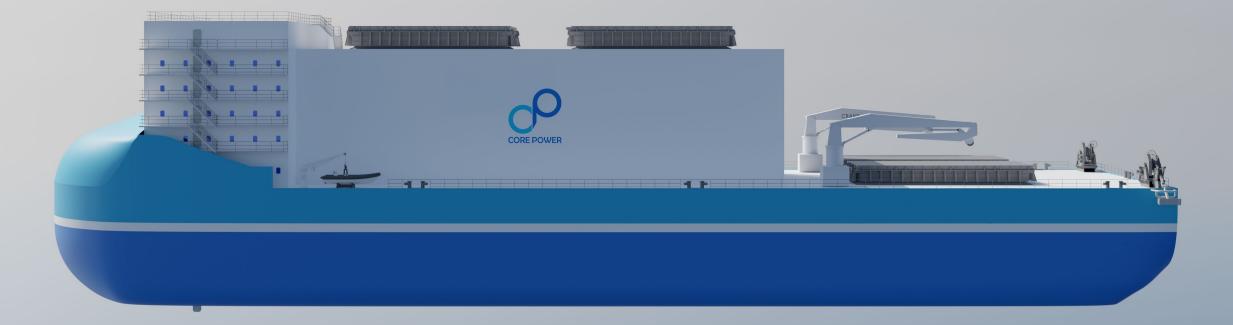
Tobi Menzies | Director – Business Development

June 2025

Introducing CORE POWER

Who? A private company with 65+ strategic shareholders from shipping, energy, trading and banking.

What? Building the '*Liberty*' Program – the world's first Maritime Civil Nuclear Program.


- **Why?** A \$5.6 trillion addressable market in maritime, improving the way nuclear is delivered and, global trade is powered.
- **How?** Mass-assembly in shipyards, of Floating Nuclear Power Plants and nuclear-powered ships.

The complete end-to-end Maritime Civil Nuclear Program for deployment at sea.

When? Orderbook opens 2028. Full commercialisation by mid-2030s.

Unlocking a \$2.6 trillion floating nuclear power market

Floating nuclear power is **fully modular** and a great way **to scale nuclear**.

Why FNPPs?

How do you buy nuclear?

- Deliver on time and within budget.
- Directly to customers, or their utilities.

Small Modular Power Plants, not SMRs

- Shipyard construction in repeatable series.
- Tow to anywhere, less site preparation needed.

Scaling nuclear deployment

- 65% of all economic activity is coastal.
- Allows nuclear to reach new markets.

Creating a \$3 trillion market for large ships

Dramatic energy improvements for commercial shipping.

Why maritime civil nuclear propulsion?

Shipping needs a solution.

Over 7,000 ships must be replaced by 2040.
✓ Must achieve 70% GHG reduction.

Nuclear works at sea, but	 Mobile PWRs (naval reactors) cannot be commercially insured in ports. ✓ Safeguards and Security by design really matters.
how do we do it right?	 End-to-end from R&D to decommissioning. Regulatory framework and export controls. ✓ Social contract with the public, build on safety.

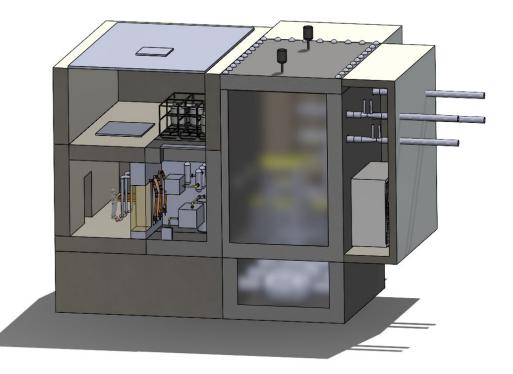
Key criteria for nuclear in commercial maritime

Insurance Ambient pressure reactor = small Emergency Planning Zor
--

Safeguards By full ecosystem design. No refuelling in ports.

Safety Inherently safe, by physics and chemistry.

Economics Superior fuel efficiency. Compact size.

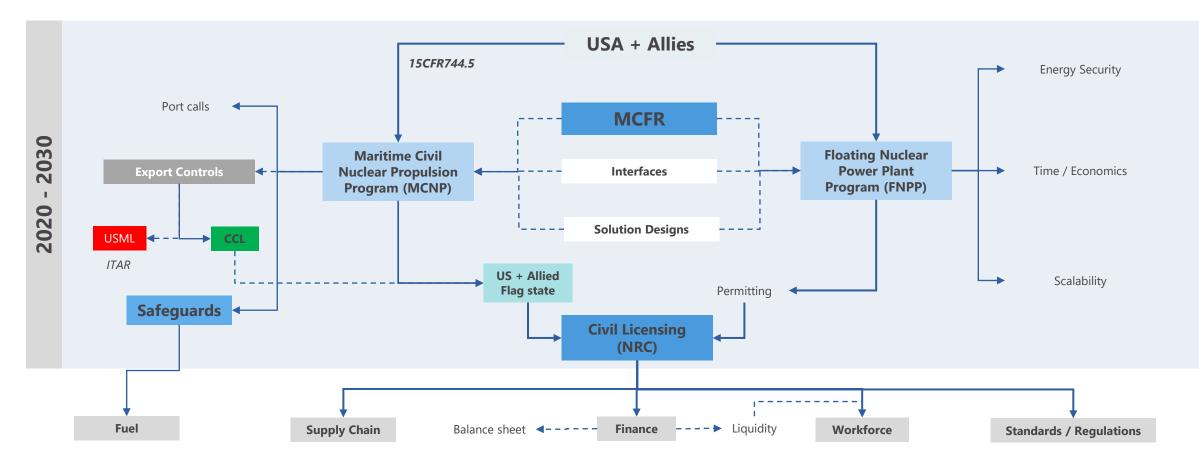


Comparison of technology alternatives

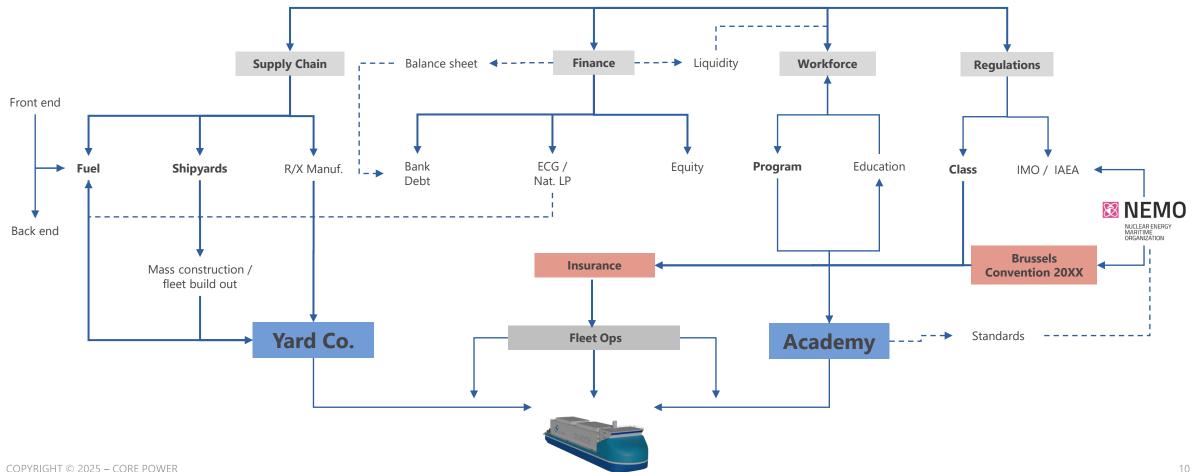
			Advanced Light / Water Reactor	Lead cooled Fast Reactor	High Temp Gas Reactor	Heat Pipe Reactor	Molten Salt Fast Reactor
		Technology Type	aLWR	LFR	HTGR	HPR	MCFR
Insurance criteria	→	Low Pressure / small EPZ					
Safeguards criteria	→	Online Refueling / long fuel cycle					
Safety criteria		No meltdown possible					
		Complete Walkaway Safety					
Economic criteria		High Fuel Utilization					
		Compact Size					
		High temperature					
			Conventional 'navy' nuclear		IRs for nd use	Nuc for Ma	

MCFR: the ideal marine reactor

What?	How?
Safe	Liquid Fuel. Cannot meltdown, overheat or lose coolant.
Efficient	96% + fuel efficiency at 20 full-power years. (30+ years in a ship).
Durable	Internal fuel filtration cleans the fuel.
Reliable	5–10-year maintenance cycle. Very few moving parts.
Insurable	Low pressure gives minimal EPZ. Condition for Insurance and mobility in ports.
Sustainable	Consumes more energy from fuel. Leaves less waste.



Molten Chloride Fast Reactor in partnership:


Phase 1: Charting the Program to 2030

- **Product development**: inherently logical designs of marine reactors which meet the key criteria for success.
- Focus on: Design, licensing, export control framework, safeguards, insurance and orderbook.

Phase 2: Supply chain and workforce development

- **Commercial prototyping**: building out supply chain, workforce, financing and specific rules framework. •
- Focus on: Liability convention, home yard facility, fuel cycle, academy and project finance.

The MCFR factory and home-yard

- MCFR production yard.
- Sea, rail and road links.
- Transport terminal.
- Large dry dock and graving dock.
- Commissioning facility.
- Fuel handling facility.
- Service and maintenance area.
- Decommissioning yard.
- ...powered by our own FNPP?

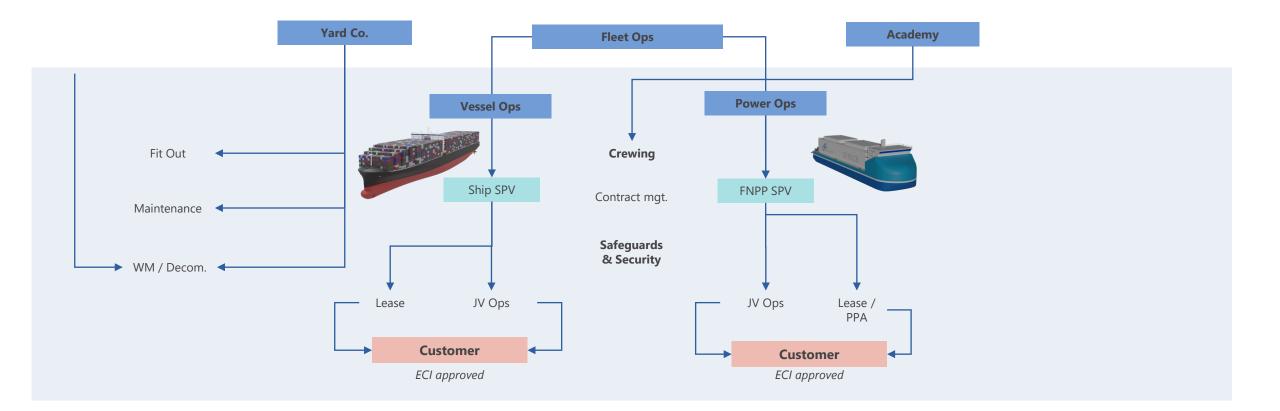
Nuclear grade, central factory plant for the MCFR co-located with 'fit-out' yard for FNPPs and Nuclear-Powered ships, initially constructed in Japan and Korea.

Rapid learning curve, accelerating innovation cycle and economy of numbers from mass assembly.

Academy, workforce development

- Academic Resources Program feeder to our workforce.
- CONVOY Executive Program training and educating customers.
- Nuclear and marine engineering academy with strong links to leading Universities.
- Certified training and education program – (...parallel to USN Nuclear *Power School.*)
- MCFR and power systems R&D.
- Laboratory and test beds.

Development for our workforce.


Gold standard training program

Multi-purpose campus.

Culture of excellence.

Phase 3: Business operations model

- Industrialisation: Creating the manufacturing base, building the operating company.
- Focus on: Contract arrangements with customers, asset financed SPVs, operating units, crewing and security.

CONTACT

US Team:	CORE POWER (US) Inc
Office:	McPherson Building, 6 th Floor, 901 15 th Street NW, Washington DC 20005, USA
Tel:	+1 202 961 3950
UK Team:	CORE POWER (UK) Ltd
Office:	Bldg 5, Chiswick Business Park, 566 Chiswick High Rd, London W4 5YF, UK
Tel:	+44 20 8849 8890

Japan Team: CORE POWER (Japan) Ltd

Office:Level 11, TOHO Hibiya Promenade Building, 1-5-2 Yurakucho, Chiyoda-ku, Tokyo 100-0006, JapanTel:+81 80 9557 1440

Web:corepower.energyEmail:admin@corepower.energy

X (Twitter):	<u>x.com/COREPOWER10</u>
LinkedIn:	<pre>linkedin.com/company/core-poweruk</pre>