Panel I: "An Automated Terminal is a Green Terminal"

Mareo of the Plats of Canada, the Carbbean, Latin America and the United States

"Is the Semi-Automated or Automated Rail Mounted Gantry Operation a *Green Terminal*?"

Milan B. Lazic

"A conference is a gathering of important people who singly can do nothing, but together can decide that nothing can be done." *

* Fred Allen, quoted in the Johannesburg Business Day

Present Situation at US Ports

- Container cargo volume is constantly growing
- Ports experiencing growth in the double digits
- No land for expansion No lateral expansion, only vertical

Ports Business Objectives

Improve container capacity per acre

- Densify their terminals
- Deployment of hi-density operations
 - Rubber Tired Gantry (RTG)
 - Rail Mounted Gantry (RMG)
 - Overhead Bridge Cranes (OBC)

Present Environmental Encounter at Ports

- Ports are considered to be one of the biggest polluters
- Public and community challenges fighting over impact of terminal growth and operations
- CA Environmental organizations delaying marine and intermodal terminals - "Ports haven't been doing enough!"

Ports Investment into Green Initiatives

- Protect communities from harmful port operation impacts
- Distinguish themselves as a leader of environmental stewardship
- Engage and educate the community and activists groups

Rail Mounted Gantry Cranes (RMG) Operation

Advantages of the **Rail Mounted Gantry** automated or semi-automated terminal operation over conventional ones from the environmental perspective

Why RMG

- Electrically powered
- Efficient operation
- Land utilization
- Less travel distance for street trucks at terminals
- Deployment: Semi-automated or automated
- Environmentally friendly

Matson Facility - California

(1981)

Courtesy of D. Reiss, Automated Terminal Systems, Inc.

How RMG Operation Benefits Environmental Perspective

Emissions are not produced

Very low operating noise levels

Low light requirements

Air Emissions

Electrically powered - no diesel emissions like with present operating equipment

Improves air quality in ports

Noise Pollution

- Electric powered operation much quieter than any diesel powered operation
- Automated operation considered almost noiseless operation

Light Pollution

Light fixtures mounted under the frame

- Bright light used only when required
- No light poles throughout yard
 - Only perimeter for security reasons
 - At client's delivery side

Speaker's statement:

The Rail Mounted Gantry Operation is the *Green Terminal*!

RMG Operational Benefits Compared to RTG

- Regenerate power back to the network cost savings in energy consumption
- No diesel engine and related maintenance requirements
- Gantry speed (10 13 ft/sec)
- Accurate movements Locate box in any given time, no GPS required
- RMG can be manned but can be easily fully automated if required or permitted

Additional Facts To Be Considered

- Infrastructure cost higher (electrification)
- Unit price of RMG is a bit higher than same span RTG (operation cost reduction - over compensate the additional cost)
- Fixed terminal design fixed and fine tuned planning well before ordering cranes
- Equipment maintenance cost savings (diesel vs. electrical)

Rail Track Requirements

- Rail track support
 - Piling
 - Concrete "sleepers" in gravel bed
- Stringy manufacturer specified rail

tolerances (CTA - requsted that RMG allow for 10 times limitation set in standard)

Concrete Sleepers

Thamesport, United Kingdom

RMG TRACK ANALYSIS RAIL SLEEPER SYSTEM

Rail Tolerances

Rail grade can be adjusted over time, as necessary, by raising the sleepers and compacting additional ballast under them.

Thamesport, United Kingdom

Container Blocks Area

Containers grounded on gravel or crushed stone curbed bed

Reduces development cost - minimal maintenance cost

Improved drainage with under drain system within the gravel bedding

RMG Operation Types

CH2M HILL Projects Utilizing RMG as the Operational Scheme

APMT - Portsmouth, VA

New York Container Terminal - Staten Island, NY

Port of Tacoma – Tacoma, WA

APMT

NYCT - Parcel C

NYCT - Parcel C Facts:

- Container Terminal: 36 acres
- RMG semi-automated operation
- Block size: 10W / 6H (1 / 5)
- Annual throughput: 435,000 TEU
- Lifts / Acre / Annually: 12,000 TEU / acre
- Estimated capital cost: \$ 210 M (includes cost of all operating equipment)
- ROIC (if completed by 2008): Year 2030

Port of Tacoma Washington United Terminal Densification Study

Deployment of RTG or RMG Operation

- Maximum capacity
- Annual throughput
- Required infrastructure upgrade
- Capital cost requirements
- Construction phasing

WUT - Existing Site Plan

15 DECEMBER 1908

RECORD DRAWING

Remail on Transit for Constructor invading dates 3/11/98
as review a stress scored construction modifications
complete by WA Suppl. No. det the Res of Rasses, U.S.A.
ESSERIO FOR CONSTRUCTION 3/11/98

RUE MUMBER 5020

SITTS & HILL ENGINEERS, INC IN B PRICES BEAR

BOAL BOAL

CHOMES

PCS CALVER BY AS-BUL! BY OFT PRESENT

CALL THE

St. Tanke

HYUNGAI TERMINAL SITE STRIPING PLAN DEAMING NO. EP-5020-3 CONTRACT NO. 978051 SHEET NO. 13 OF 105

WUT - RMG Site Plan

WUT (80 acre CY) Facts

Operating System	Capacity (TEU)	TGS (TEU)	Annual Throughput (TEU) - Yard
Chassis	6,141	6,141	448,300
RTG	24,300	5,093	1,412,600
RMG	41,081	7,412	2,687,300

CH2M HILL Services to Clients for Assessment of Impacts

- Technical
- Economical
- Environmental
 - Emissions
 - Pollutions

Challenges for "Total Green Terminal"

Trucks

Vessels

- Hustlers container and rail yard
- Street trucks

Muuga Container Terminal - Estonia

- Integrate slow approach to ports into sailing schedules
- Shore Power "Cold ironing"

Conclusion

- Do our best in the process to plan and build the greenest terminal possible
- Work together to make the environment safer for us and future generations

"What have you done today to make a green terminal?"

Thank You!

MTL, Dublin, Ireland

Speaker Contact Information

Milan B. Lazic

Ports & Maritime Group

CH2M HILL

99 Cherry Hill Road

Suite 200

Parsippany, NJ 07054-1102

Phone: 973.316.9300

Fax: 267.675.4566

mlazic@ch2m.com

www.ch2m.com