Natural Resource Damage Determination

Estimating the Magnitude of Damages

David Allen Stratus Consulting Boulder, CO

1. How Big is the Case?

Need for Quick Initial Estimates

- Damages small enough for quick resolution w/o formal assessment (CNTS value > assessment cost)?
- Damages small enough for cooperative assessment w/o realistic threat of litigation?
- Damages large enough that interest on damages can fund lobbyists and litigation?
- How likely public and expert demands for action (precise assessment, complete compensation)?

Preliminary Estimate of Damages (Informal)

- "Back of envelope"
 - Volume/quantity of release (big or small?)
 - Speed/immediacy of release (recent/quick or old/slow?)
 - Affected area (large/long time or small/short time?)
 - Injury likelihood (complete destruction or subtle effects?)
 - Likelihood that experts, elected officials, and public know and care?
 - Likelihood that problem can be fixed quickly/cheaply?
 - $\ \ \, \square \ \, {\sf Routine \ leakage} \leftrightarrow {\sf pipeline \ break} \leftrightarrow {\sf Exxon \ Valdez}$

Preliminary Estimate of Damages (Formal)

- One of the initial steps for a formal Assessment Plan
- Purpose to ensure assessment costs < damages</p>
- Methods (more than back of envelope)
 - Resource equivalency: lost 5 nests; cost of 5 platforms
 - Habitat equivalency: lost 5 acres; cost to restore 5 acres
 - Benefits transfer: valuation literature applied to local situation
 - Comparison to other sites

2. Concepts for Calculating Damages

NRDA Concepts

- Fundamental purpose of NRDA is to make the public whole
- Restoration gains offset injury losses
- Technical assessment must link objective measures of:

Release \leftrightarrow Pathway \leftrightarrow Exposure \leftrightarrow Injury/Losses \leftrightarrow Restoration/Gains

Art and science of NRDA is determining which measures are meaningful, relevant, reliable, practical, and interrelated

NRDA Concepts

- Injuries/losses and restoration/gains have various levels of importance (value) to public, experts, agencies
- Must either assume or measure values throughout entire technical assessment
 - Which injuries are relevant to damages?
 - Which service losses are relevant to damages?
 - Will damages be quantified as projects, costs, or values?

Economic Valuation Concepts

- Active use values
 - Values related to one's direct use of the injured resources
 Fishing, viewing, hunting, harvesting, etc.
 - Potential future use of the injured resources (option value)
- Passive use (nonuse) values
 - Values unrelated or indirectly related to one's own use of the injured resources (e.g., bequest and existence values)
 - Public and ecological services provided by natural resources (e.g., carbon sequestration, nutrient cycling)

Economic Valuation Concepts

- Revealed preference methods and data
 - Relies on actual behavior to determine values
 - Often preferred by responsible parties
 - Because passive values cannot be measured?
 - Because behavior is more reliable than hypothetical statements?
- Stated preference methods and data
 - Relies on surveys and hypothetical scenarios
 - Willingness to pay (WTP), trade, or accept

3. Methods for Calculating Damages

NR Damage Computation Methods

Methods	Can measure active use values	Can measure passive use values
Market price, factor price, and replacement cost (revealed preference)	Yes	No
Recreation demand modelling (revealed preference)	Yes	No
Property values (revealed preference)	Yes	No
Contingent valuation, conjoint analysis, value equivalency (stated preference)	Yes	Yes
Benefits transfer from literature (revealed or stated preference)	Yes	Yes
Habitat/Resource/Service Equivalency (neither)	Assumes value equivalency; and assumes meaningful metrics	

Calculating Damages: Benefits Transfer

- BT uses wide range of peer-reviewed valuation estimates for natural resource service flows
- BT valuation estimates may include active and/or passive use values for resource service flows
- BT requires careful consideration of similarities/ differences between the original study and the situation being valued

Scale NR Injuries/Losses with Restoration/Gains

Value Equivalence

- Relevance and relative value of restoration options determined by public
- Restoration provides similar (but not the same) or dissimilar resources and services that cannot be scaled solely on ecological criteria
- Use survey methods to obtain value scaling between injuries and restoration

- Habitat/Resource/Service Equivalence
 - Relevance and relative value of restoration options assumed (or chosen by experts)
 - Restoration provides same or similar resources and services at same or similar sites
 - Adjust for magnitude as well as spatial and temporal extent of injury and restoration impacts on service flows
 - Assume replacement values then equal injured values (and covers all relevant active and passive values)

- Scaling alternatives to achieve this offset include:
 - Resource-to-resource (5 bald eagles lost; 5 gained)
 - Service-to-service (5 angler days lost; 5 gained)
 - Value-to-value (\$5 worth of NR lost; \$5 worth gained)
 - Value-to-cost (\$5 worth of NR lost; \$5 spent on NR)

4. Habitat Equivalency Analysis

Calculating Damages with HEA

- Calculates the present value of the service flow loss (debit) resulting from the injury
- Calculates the present value of the increase in service flows provided by the restoration actions (credit)
- Calculations of HEA debit and credit account for
 - Spatial extent of injuries and restoration
 - Degree of injury and restoration
 - Temporal extent of injury and restoration

Natural Resource Injury/ Service Losses

HEA Debit Calculation with Fixed Inputs

- Service losses from injury
 - % of baseline services 1980-2000: 13%
 - % baseline services 2000-2020: linear increase from remediation from 13% to 75%
 - % baseline services 2020-2120: 75% (no further improvement after remediation)
- Extent of injury
 - 50 acres
- Discount rate:
 - **4%**
- Present value of debit: 1,915 acre/years

Service Improvements from Restoration

HEA Credit Calculation with Fixed Inputs

- Service gains from restoration
 - % of baseline services at start of work in 2007: 120%
 - % of baseline services at end of restoration work in 2027: 173%
 - % of baseline services from 2027 to 2127: 173% (no improvement once restoration work stops)
- Unit of restoration
 - 1 acre
- Discount rate:
 - □ **4%**
- Present value of credit: 9.7 acre/years

HEA Restoration Scaling

- Scale of restoration determined from present value results for HEA debit and credit
 - Units of required restoration = HEA debit / HEA credit
- Required units of restoration
 - 1,915 present value acre/years (debit)
 - 9.7 present value acre/years (credit)
 - 1,915 / 9.7 = 198 acres
 - Can be monetized by calculating the cost of restoring 198 acres

Monte Carlo HEA Example

- Incorporate uncertainty into debit assumptions
 - % baseline services 1980-2000: 0%-25% (uniform distribution)
 - % baseline services 2000-2020 with linear increases: 50%-100% (uniform distribution)
 - % baseline services 2020-2120: 50%-100% (uniform distribution)
- Incorporate uncertainty into credit assumptions
 - % service increase in restored area: 45%-95% (triangular distribution, 80% as mode)
 - increase occurs from 2000 to 2020, linear change
- Incorporate uncertainty into discount rate:
 - 2%-6% (uniform distribution)

Monte Carlo HEA Results

- Monte Carlo analysis run with 5,000 simulations (i.e., draws)
- Results for required scale of restoration (rounded to nearest 10 acres):
 - Minimum: 60 acres
 - Median: 200 acres
 - Mean: 220 acres
 - Maximum: 800 acres
 - Fixed inputs result: 198 acres

Distribution of Required Scale of Compensatory Restoration when Incorporating Uncertainty in HEA Inputs

5. Total Value Equivalency

Green Bay (WI/MI) Example

- Economic study of public values and attitudes (stated preference)
- Value to public of increased environmental quality through restoration is balanced against the value lost from continuing PCB injuries
- This determines "how much is enough," with the flexibility to consider different project mixes

- Written survey, conducted in 10 counties in Green Bay area
- Conducted using rigorous survey and economic methods
- Designed to quantify how the public balances ongoing PCB injuries against improved environmental quality

- Economic model constructed from survey results
 - 20, 40, 70, or 100 years of PCB-caused injuries
 - Nonpoint source runoff control (net increase)
 - Wetland preservation and restoration (net increase)
 - Park improvements (not adding new parks)
 - Tax increases
- Less PCB remediation ↔ more restoration required
- Straight restoration trades had less variance in responses than WTP; diminishing marginal utility in restoration categories

	Wetlands		Increase in bay	Improvement
PCB cleanup scenario	Acres preserved	Acres restored	water clarity from runoff control	in existing parks
Intensive	8,700	2,900	+2"	10%
(injuries gone in 20 years)	6,900	2,300	+6"	5%
Intermediate (injuries gone in 40 years)	9,900	3,300	+4"	10%
	8,700	2,900	+8"	10%

Cost > Value	Cost ≅ Value	Cost < Value
Additional trustee sediment restoration: \$111 billion	Habitat restoration cost: \$111-268 million	Ft. James recreational facility cost: \$7 million
Total value for additional trustee sediment restoration (stated preference): \$610 million	Total value of habitat restoration (stated preference): \$254-610 million	Ft. James recreational facility value (revealed preference): \$55 million

- In theory, trustees could seek \$111 billion to restore (additional to cleanup) sediments of Green Bay... ...but less authority than cleanup, and cost 180x value
- In theory, a popular park could be cheap and valuable...
 ...but merry-go-rounds are not natural resources
- Therefore, look for cost-effective, relevant natural resource restoration that can be fairly and accurately valued

Conclusions

- The level of proof required is directly related to the total damages (cost) that the PRPs must bear
- For small damage claims (absolute, and relative to their perception of the value of a CNTS), PRPs may accept extrapolations and "back-of-the-envelope" estimates
- For large damage claims (absolute, and relative to their perception of their ability to pay), PRPs will challenge even highly credible analyses

Conclusions

- Many damage calculation methods can be useful
 - First, convince yourself of the likely magnitude of damages using available information and techniques (e.g., HEA, REA, benefits transfer)
 - If the damages appear significant, refine the analyses, collect additional data, and apply additional techniques
 - If the interest on the damages are enough to fund litigation,
 do not rely on backs of envelopes!

Conclusions

- All techniques can be attacked
 - A CVM without high response rates, and very carefully worded and tested surveys, is unlikely to prevail in expert negotiations or litigation
 - A HEA without real measures of how injuries and restorations truly interact, and without any regard to cost versus value, is also unlikely to prevail in expert negotiations or litigation
 - Any technique that does not account for response/cleanup is unlikely to prevail

