

Life Cycle Costing and Port Structures

Bruce Lambert

Institute For Water Resources

Acapi

US Army Corps of Engineers

Objectives

What is Life Cycle Management
 How to incorporate into current plans
 Research challenges and sources for more information

What is Life Cycle Costing

Avoiding unexpected system failure from negligent maintenance, budgeting or planning

 Generally starts at preconstruction of a project, but can be incorporated anytime
 Do you build what you want or what you can?
 How is this maintained?

Challenge in Life Cycle Management for Infrastructure

- Engineering Design Standards are basis-structures gauged on risk of structural "failure" or condition
 Lack of consistent inspection approaches
- Engineering standards for different components mechanical versus structural
- Difficult to test large structures
- Long Design life 50 -100 years
- Harshness of Marine Environment
- Structure become technical obsolete before becoming physically obsolete

Risks from Poor LCM

Port closures

Risk to structural integrity (loss of load bearing wharves, corrosion, collapse)

Safety – injury or loss of life

Environmental exposures

Potential liability issues

A Generic System for Managing Port Structures

Asset Inventory Condition Assessment (Inspection) and Performance Modeling

Alternatives Evaluation and Program Optimization (rehabilitation – removal)

Short and Long Range Plans Project Implementation (Construction)

6

Performance Monitoring (Operations) Implementing Life Cycle Costing During Planning/Construction

Determine required project needs and total costs over project cycle

- Parameters to consider when costing alternatives:
 - ➢Net Present Value
 - Determine useful life
 - Loss of Revenue from failure
 - ≻Maintenance costs
 - Demolition or removal costs
 - ≻Tax structures

Inspection During Operation

Three approaches – Fix as fail >Inspect and rehabilitate Preventive Maintenance Inspection types and frequency Initial design suggests inspection schedule >Visual inspection not always accurate >Balance of other inspection types – costly and may not be preformed as frequently

Implementation Challenges?

Projects have multiple uses Competing and changing interests - commitment Determining or guaranteeing a minimum standards for safe use or performance Planning and defining current and future needs Data integration – GIS and data warehousing Process transparency must be developed Education to port staff, commissioners and port users necessary

Research gaps related to adopting life cycle management

- Movement to more portable models and tools for end users
- Recognition this is a data intense process
- Examine ways to reliability model condition assessments

How does system respond to extreme events
Non-destructive inspection techniques
Examine recommendations for given repairs
Can uncertainties by properly quantified?

More Sources of Information

"Life cycle Management of Port Structures-General Principles" – Report of WG 31, Supplement to Bulletin 99 (1998) **ASCE/AASHTO/FHWA/TRB** Journal - "Structure and Infrastructure Engineering" PIANC – MarCom Technical Seminar, Feb 05 Design of Movable Weirs and Storm Surge Barriers InCom WG 26 – Jan 2006

- One of 6 goals LCM
 Topics included design standards, costing structures, performance goals, and environmental considerations
- Enclosed CD-Rom with appendix materials

Bruce Lambert Senior Economist Institute for Water Resources US Army Corps of Engineers

703-428-6667

Bruce.Lambert@usace.army.mil

Maria